
Optimizers - Keras
Base Optimizer API These methods and attributes are common to all Keras optimizers. [source] Optimizer class keras.optimizers.Optimizer()
SGD - Keras
learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.
Adamax - Keras
learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.
Optimizers - Keras
Optimizers SGD RMSprop Adam AdamW Adadelta Adagrad Adamax Adafactor Nadam Ftrl [source] apply_gradients method Optimizer.apply_gradients( grads_and_vars, name=None, …
Adam - Keras
learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.
Muon - Keras
learning_rate: A float, keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use. The learning rate.
Ftrl - Keras
learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.
Lamb - Keras
learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.
ExponentialDecay - Keras
The learning rate schedule is also serializable and deserializable using keras.optimizers.schedules.serialize and keras.optimizers.schedules.deserialize. Arguments
LearningRateSchedule - Keras
The learning rate schedule base class. You can use a learning rate schedule to modulate how the learning rate of your optimizer changes over time. Several built-in learning rate schedules are …