About 1,970 results
Open links in new tab
  1. Optimizers - Keras

    Base Optimizer API These methods and attributes are common to all Keras optimizers. [source] Optimizer class keras.optimizers.Optimizer()

  2. SGD - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  3. Adamax - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  4. Optimizers - Keras

    Optimizers SGD RMSprop Adam AdamW Adadelta Adagrad Adamax Adafactor Nadam Ftrl [source] apply_gradients method Optimizer.apply_gradients( grads_and_vars, name=None, …

  5. Adam - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  6. Muon - Keras

    learning_rate: A float, keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use. The learning rate.

  7. Ftrl - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  8. Lamb - Keras

    learning_rate: A float, a keras.optimizers.schedules.LearningRateSchedule instance, or a callable that takes no arguments and returns the actual value to use.

  9. ExponentialDecay - Keras

    The learning rate schedule is also serializable and deserializable using keras.optimizers.schedules.serialize and keras.optimizers.schedules.deserialize. Arguments

  10. LearningRateSchedule - Keras

    The learning rate schedule base class. You can use a learning rate schedule to modulate how the learning rate of your optimizer changes over time. Several built-in learning rate schedules are …